About MC-SC2
Advisory Board
Useful Links
Assignment example


MC-SC2 Publications about: k-means clustering
Articles in journal or book chapters
  1. U. Gonzales-Barron and F. Butler. A comparison of seven thresholding techniques with the k-means clustering algorithm for measurement of bread-crumb features by digital image analysis. Journal of Food Engineering, 74(2):268-278, 2006. Keyword(s): image analysis, bread, thresholding, crumb features. [bibtex-entry]

  2. Z. Knops, J. Maintz, M. Viergever, and J. Pluim. Normalized mutual information based registration using k-means clustering and shading correction. Medical Image Analysis, 10(3):432-439, 2006. Keyword(s): image registration, normalized mutual information, k-means clustering, shading correction, robustness. [bibtex-entry]

  3. M. Otsubo, K. Sato, and A. Yamaji. Computerized identification of stress tensors determined from heterogeneous fault-slip data by combining the multiple inverse method and k-means clustering. Journal of Structural Geology, 28(6):991-997, 2006. Keyword(s): stress tensor, k-means, multiple inverse method, s-space, stress difference, meso-scale fault. [bibtex-entry]

  4. G. Peters. Some refinements of rough k-means clustering. Pattern Recognition, 39(8):1481-1491, 2006. Keyword(s): cluster algorithms, rough k-means, soft computing, data analysis, forest data, bioinformatics data. [bibtex-entry]

  5. Y. Marzouk and A. Ghoniem. K-means clustering for optimal partitioning and dynamic load balancing of parallel hierarchical N-body simulations. Journal of Computational Physics, 207(2):493-528, 2005. Keyword(s): k-means clustering, treecode, n-body problems, hierarchical methods, parallel processing, load balancing, particle methods, vortex methods, three-dimensional flow, transverse jet. [bibtex-entry]

  6. J. Tian, L. Zhu, S. Zhang, and L. Liu. Improvement and parallelism of k-means clustering algorithm. Tsinghua Science & Technology, 10(3):277-281, 2005. Keyword(s): data mining, cluster analysis, k-means algorithm, parallelism. [bibtex-entry]

  7. T. Kanungo, D. Mount, N. Netanyahu, C. Piatko, R. Silverman, and A. Wu. A local search approximation algorithm for k-means clustering. Computational Geometry, 28(2-3):89-112, 2004. Keyword(s): clustering, k-means, approximation algorithms, local search, computational geometry. [bibtex-entry]

  8. S. Khan and A. Ahmad. Cluster center initialization algorithm for k-means clustering. Pattern Recognition Letters, 25(11):1293-1302, 2004. Note: Short Communication. Keyword(s): k-means clustering, initial cluster centers, cost function, density based multiscale data condensation. [bibtex-entry]

  9. Y.-M. Cheung. K*-means: A new generalized k-means clustering algorithm. Pattern Recognition Letters, 24(15):2883-2893, 2003. Note: Short Communication. Keyword(s): clustering analysis, k-means algorithm, cluster number, rival penalization. [bibtex-entry]

  10. A. Likas, N. Vlassis, and J. Verbeek. The global k-means clustering algorithm. Pattern Recognition, 36(2):451-461, 2003. Keyword(s): clustering, k-means algorithm, global optimization, k-d trees, data mining. [bibtex-entry]

  11. D. Modha and W. Spangler. Feature weighting in k-means clustering. Machine Learning, 52(3):217-237, 2003. Keyword(s): clustering, convexity, convex k-means algorithm, feature combination, feature selection, Fisher’s discriminant analysis, text mining, unsupervised learning. [bibtex-entry]

  12. M. Vrahatis, B. Boutsinas, P. Alevizos, and G. Pavlides. The new k-windows algorithm for improving the k-means clustering algorithm. Journal of Complexity, 18(1):375-391, 2002. Keyword(s): k-means clustering algorithm, unsupervised learning, data mining, range search. [bibtex-entry]

  13. P. Lagacherie, D. Cazemier, P. van Gaans, and P. Burrough. Fuzzy k-means clustering of fields in an elementary catchment and extrapolation to a larger area. Geoderma, 77(2-4):197-216, 1997. Keyword(s): hydrology, fuzzy sets, clustering. [bibtex-entry]

  14. P. Lagacherie, D. Cazemier, P. van Gaans, and P. Burrough. Fuzzy k-means clustering of fields in an elementary catchment and extrapolation to a larger area. Geoderma, 77(2-4):197-216, 1997. Keyword(s): hydrology, fuzzy sets, France. [bibtex-entry]



This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All person copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.

Les documents contenus dans ces répertoires sont rendus disponibles par les auteurs qui y ont contribué en vue d'assurer la diffusion à temps de travaux savants et techniques sur une base non-commerciale. Les droits de copie et autres droits sont gardés par les auteurs et par les détenteurs du copyright, en dépit du fait qu'ils présentent ici leurs travaux sous forme électronique. Les personnes copiant ces informations doivent adhérer aux termes et contraintes couverts par le copyright de chaque auteur. Ces travaux ne peuvent pas être rendus disponibles ailleurs sans la permission explicite du détenteur du copyright.

Last modified: Fri Dec 15 07:05:48 2006
Author: Juscelino Dias.

This document was translated from BibTEX by bibtex2html


[Home] [About MC-SC2] [Researchers] [Advisory Board] [Software] [MC-SC2 Bibliography][Forum] [FAQ] [Glossary] [Useful Links] [Contacts] [Acknowledgments]  



©2004-2008 by Juscelino ALMEIDA DIAS and José Rui FIGUEIRA.