About MC-SC2
Advisory Board
Useful Links
Assignment example


MC-SC2 Publications about: data mining
Articles in journal or book chapters
  1. N. Belacel, H. Raval, and A. Punnen. Learning multicriteria fuzzy classification method PROAFTN from data. Computers & Operations Research, 34(7):1885-1898, 2007. Keyword(s): data mining, multiple criteria classification, PROAFTN, variable neighborhood search. [bibtex-entry]

  2. R.-J. Kuo, H.-S. Wang, T.-L. Hu, and S.-H. Chou. Application of ant k-means on clustering analysis. Computers & Mathematics with Applications, 50(10-12):1709-1724, 2005. Keyword(s): data mining, clustering analysis, ant colony optimization. [bibtex-entry]

  3. H. Nakayama, Y. Yun, T. Asada, and M. Yoon. MOP/GP models for machine learning. European Journal of Operational Research, 166(3):756-768, 2005. Keyword(s): data mining, machine learning, linear classifier with maximal margin, support vector machine, goal programming. [bibtex-entry]

  4. J. Tian, L. Zhu, S. Zhang, and L. Liu. Improvement and parallelism of k-means clustering algorithm. Tsinghua Science & Technology, 10(3):277-281, 2005. Keyword(s): data mining, cluster analysis, k-means algorithm, parallelism. [bibtex-entry]

  5. P. Hammer, A. Kogan, B. Simeone, and S. Szedmák. Pareto-optimal patterns in logical analysis of data. Discrete Applied Mathematics, 144(1-2):79-102, 2004. Keyword(s): extremal patterns, data mining, machine learning, classification accuracy, boolean functions. [bibtex-entry]

  6. H. Ishibuchi and T. Yamamoto. Fuzzy rule selection by multi-objective genetic local search algorithms and rule evaluation measures in data mining. Fuzzy Sets and Systems, 141(1):59-88, 2004. Keyword(s): data mining, pattern classification, fuzzy rule selection, evolutionary multi-criterion optimization, hybrid genetic algorithms. [bibtex-entry]

  7. S. Sohn and C. Dagli. Ensemble of Evolving Neural Networks in Classification. Neural Processing Letters, 19(3):191-203, 2004. Keyword(s): classification, combining classifiers, data mining, genetic algorithm, neural networks. [bibtex-entry]

  8. V. Ananthanarayana, M. Murty, and D. Subramanian. Tree structure for efficient data mining using rough sets. Pattern Recognition Letters, 24(6):851-862, 2003. Note: Short Communication. Keyword(s): PC-tree, single database scan, dynamic mining, segment PC-tree, rough PC-tree, classification, rough sets. [bibtex-entry]

  9. Y.-C. Hu, R.-S. Chen, and G.-H. Tzeng. Finding fuzzy classification rules using data mining techniques. Pattern Recognition Letters, 24:509-519, 2003. Keyword(s): data mining, fuzzy sets, classification, genetic algorithm. [bibtex-entry]

  10. A. Likas, N. Vlassis, and J. Verbeek. The global k-means clustering algorithm. Pattern Recognition, 36(2):451-461, 2003. Keyword(s): clustering, k-means algorithm, global optimization, k-d trees, data mining. [bibtex-entry]

  11. I. Becerra-Fernandez, S. Zanakis, and S. Walczak. Knowledge discovery techniques for predicting country investment risk. Computers & Industrial Engineering, 43(4):787-800, 2002. Keyword(s): data mining, knowledge discovery, country investing risk. [bibtex-entry]

  12. Y.-C. Hu, R.-S. Chen, and G.-H. Tzeng. Mining fuzzy association rules for classification problems. Computers & Industrial Engineering, 43:735-750, 2002. Keyword(s): data mining, knowledge acquisition, classification, association rules. [bibtex-entry]

  13. S. Sánchez, E. Triantaphyllou, and D. Kraft. A feature mining based approach for the classfication of text documents into disjoint classes. Information Processing and Management, 38:583-604, 2002. Keyword(s): document classification, document indexing, vector space model, data mining, one clause at a time (OCAT) algorithm, machine learning. [bibtex-entry]

  14. M. Vrahatis, B. Boutsinas, P. Alevizos, and G. Pavlides. The new k-windows algorithm for improving the k-means clustering algorithm. Journal of Complexity, 18(1):375-391, 2002. Keyword(s): k-means clustering algorithm, unsupervised learning, data mining, range search. [bibtex-entry]

  15. N. Ye and X. Li. A scalable, incremental learning algorithm for classification problems. Computers & Industrial Engineering, 43:677-692, 2002. Keyword(s): data mining, classification, incremental learning, scalability. [bibtex-entry]

  16. V. Ananthanarayana, M. Murty, and D. Subramanian. An incremental data mining algorithm for compact realization of prototypes. Pattern Recognition, 34(11):2249-2251, 2001. Note: Short Communication. [bibtex-entry]

  17. M. Beynon and M. Peel. Variable precision rough set theory and data discretisation: An application to corporate failure prediction. Omega - The International Journal of Management Science, 29:561-576, 2001. Keyword(s): data mining, failure prediction, FUSINTER data discretisation, rough set theory, variable precision rough set theory. [bibtex-entry]

  18. T.-P. Hong, T.-T. Wang, S.-L. Wang, and B.-C. Chien. Learning a coverage set of maximally general fuzzy rules by rough sets. Expert Systems with Applications: An International Journal, 19:97-103, 2000. Keyword(s): machine learning, fuzzy sets, rough sets, data mining, expert system. [bibtex-entry]

  19. H. Moshkovich, A. Mechitov, and R. Schellenberger. Effectiveness of ordinal information for data mining. IEEE - The Institute of Electrical and Electronics Engineers, pp 1882-1887, 2000. [bibtex-entry]

  20. E. Boros, T. Ibaraki, and K. Makino. Logical analysis of binary data with missing bits. Artificial Intelligence, 107(2):219-263, 1999. Keyword(s): knowledge discovery, data mining, logical analysis of data, boolean functions, partial defined boolean functions, missing bits, NP-hardness. [bibtex-entry]

  21. C. Emmanouilidis, A. Hunter, J. MacIntyre, and C. Cox. Multiple-criteria genetic algorithms for feature selection in neuro-fuzzy modeling. IEEE Transactions on Neural Networks, 6:4387-4392, 1999. Keyword(s): multiobjective genetic algorithms, fuzzy models, classification, feature selection, data mining. [bibtex-entry]

  22. C.-C. Chan. A rough set approach to attribute generalization in data mining. Information Sciences: An International Journal, 107:169-176, 1998. Keyword(s): rough sets, data mining, inductive learning. [bibtex-entry]

  23. S. Tsumoto. Extraction of experts' decision rules from clinical databases using rough set model. Intelligent Data Analysis, 2:215-227, 1998. Keyword(s): rough sets, data mining, knowledge discovery in databases, medical knowledge acquisition. [bibtex-entry]



This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All person copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.

Les documents contenus dans ces répertoires sont rendus disponibles par les auteurs qui y ont contribué en vue d'assurer la diffusion à temps de travaux savants et techniques sur une base non-commerciale. Les droits de copie et autres droits sont gardés par les auteurs et par les détenteurs du copyright, en dépit du fait qu'ils présentent ici leurs travaux sous forme électronique. Les personnes copiant ces informations doivent adhérer aux termes et contraintes couverts par le copyright de chaque auteur. Ces travaux ne peuvent pas être rendus disponibles ailleurs sans la permission explicite du détenteur du copyright.

Last modified: Fri Dec 15 07:05:47 2006
Author: Juscelino Dias.

This document was translated from BibTEX by bibtex2html


[Home] [About MC-SC2] [Researchers] [Advisory Board] [Software] [MC-SC2 Bibliography][Forum] [FAQ] [Glossary] [Useful Links] [Contacts] [Acknowledgments]  



©2004-2008 by Juscelino ALMEIDA DIAS and José Rui FIGUEIRA.