| |
BACK TO INDEX
MC-SC2 Publications about: k-means
|
Articles in journal or book chapters
|
-
K.-L. Chung and K.-S. Lin.
An efficient line symmetry-based k-means algorithm.
Pattern Recognition Letters,
27(7):765-772,
2006.
Note: Short Communication.
Keyword(s): clustering,
k-means algorithm,
point symmetry,
line symmetry.
[bibtex-entry]
-
C. Cifarelli,
L. Nieddu,
O. Seref,
and P. Pardalos.
K-T.R.A.C.E: A kernel k-means procedure for classification.
Computers & Operations Research,
2006.
Note: In Press.
Keyword(s): classification,
k-means,
kernel functions.
[bibtex-entry]
-
K. Doherty,
R. Adams,
and N. Davey.
Unsupervised learning with normalised data and non-Euclidean norms.
Applied Soft Computing,
2006.
Note: In Press.
Keyword(s): distance measures,
data normalisation,
unsupervised learning,
neural gas,
growing neural gas,
self-organising map,
k-means.
[bibtex-entry]
-
U. Gonzales-Barron and F. Butler.
A comparison of seven thresholding techniques with the k-means clustering algorithm for measurement of bread-crumb features by digital image analysis.
Journal of Food Engineering,
74(2):268-278,
2006.
Keyword(s): image analysis,
bread,
thresholding,
crumb features.
[bibtex-entry]
-
Z. Knops,
J. Maintz,
M. Viergever,
and J. Pluim.
Normalized mutual information based registration using k-means clustering and shading correction.
Medical Image Analysis,
10(3):432-439,
2006.
Keyword(s): image registration,
normalized mutual information,
k-means clustering,
shading correction,
robustness.
[bibtex-entry]
-
H. Lee,
H. Chen,
and J. Lin.
K-means method for rough classification of R&D employees' performance evaluation.
International Transactions in Operational Research,
13(4):365-377,
2006.
[bibtex-entry]
-
S. Mingoti and J. Lima.
Comparing SOM neural network with fuzzy c-means, k-means and traditional hierarchical clustering algorithms.
European Journal of Operational Research,
2006.
Note: In Press.
Keyword(s): multivariate statistics,
hierarchical clustering,
SOM neural network,
fuzzy c-means,
k- means.
[bibtex-entry]
-
M. Otsubo,
K. Sato,
and A. Yamaji.
Computerized identification of stress tensors determined from heterogeneous fault-slip data by combining the multiple inverse method and k-means clustering.
Journal of Structural Geology,
28(6):991-997,
2006.
Keyword(s): stress tensor,
k-means,
multiple inverse method,
s-space,
stress difference,
meso-scale fault.
[bibtex-entry]
-
G. Papamichail and D. Papamichail.
The k-means range algorithm for personalized data clustering in e-commerce.
European Journal of Operational Research,
2006.
Note: In Press.
Keyword(s): heuristics,
distributed consumer decision-making,
range search,
data clustering,
personalized systems.
[bibtex-entry]
-
G. Peters.
Some refinements of rough k-means clustering.
Pattern Recognition,
39(8):1481-1491,
2006.
Keyword(s): cluster algorithms,
rough k-means,
soft computing,
data analysis,
forest data,
bioinformatics data.
[bibtex-entry]
-
R.-J. Kuo,
H.-S. Wang,
T.-L. Hu,
and S.-H. Chou.
Application of ant k-means on clustering analysis.
Computers & Mathematics with Applications,
50(10-12):1709-1724,
2005.
Keyword(s): data mining,
clustering analysis,
ant colony optimization.
[bibtex-entry]
-
Y. Marzouk and A. Ghoniem.
K-means clustering for optimal partitioning and dynamic load balancing of parallel hierarchical N-body simulations.
Journal of Computational Physics,
207(2):493-528,
2005.
Keyword(s): k-means clustering,
treecode,
n-body problems,
hierarchical methods,
parallel processing,
load balancing,
particle methods,
vortex methods,
three-dimensional flow,
transverse jet.
[bibtex-entry]
-
J. Tian,
L. Zhu,
S. Zhang,
and L. Liu.
Improvement and parallelism of k-means clustering algorithm.
Tsinghua Science & Technology,
10(3):277-281,
2005.
Keyword(s): data mining,
cluster analysis,
k-means algorithm,
parallelism.
[bibtex-entry]
-
Y. De Smet and L. Montano Guzmán.
Towards multicriteria clustering: An extension of the k-means algorithm.
European Journal of Operational Research,
158(2):390-398,
2004.
Keyword(s): multiple criteria analysis,
clustering,
preference modelling,
k-means algorithm.
[bibtex-entry]
-
T. Kanungo,
D. Mount,
N. Netanyahu,
C. Piatko,
R. Silverman,
and A. Wu.
A local search approximation algorithm for k-means clustering.
Computational Geometry,
28(2-3):89-112,
2004.
Keyword(s): clustering,
k-means,
approximation algorithms,
local search,
computational geometry.
[bibtex-entry]
-
S. Khan and A. Ahmad.
Cluster center initialization algorithm for k-means clustering.
Pattern Recognition Letters,
25(11):1293-1302,
2004.
Note: Short Communication.
Keyword(s): k-means clustering,
initial cluster centers,
cost function,
density based multiscale data condensation.
[bibtex-entry]
-
Y.-M. Cheung.
K*-means: A new generalized k-means clustering algorithm.
Pattern Recognition Letters,
24(15):2883-2893,
2003.
Note: Short Communication.
Keyword(s): clustering analysis,
k-means algorithm,
cluster number,
rival penalization.
[bibtex-entry]
-
A. Likas,
N. Vlassis,
and J. Verbeek.
The global k-means clustering algorithm.
Pattern Recognition,
36(2):451-461,
2003.
Keyword(s): clustering,
k-means algorithm,
global optimization,
k-d trees,
data mining.
[bibtex-entry]
-
D. Modha and W. Spangler.
Feature weighting in k-means clustering.
Machine Learning,
52(3):217-237,
2003.
Keyword(s): clustering,
convexity,
convex k-means algorithm,
feature combination,
feature selection,
Fisher’s discriminant analysis,
text mining,
unsupervised learning.
[bibtex-entry]
-
M. Vrahatis,
B. Boutsinas,
P. Alevizos,
and G. Pavlides.
The new k-windows algorithm for improving the k-means clustering algorithm.
Journal of Complexity,
18(1):375-391,
2002.
Keyword(s): k-means clustering algorithm,
unsupervised learning,
data mining,
range search.
[bibtex-entry]
-
M. Vichi and H. Kiers.
Factorial k-means analysis for two-way data.
Computational Statistics & Data Analysis,
37(1):49-64,
2001.
Keyword(s): cluster analysis,
factorial model,
tandem analysis,
k-means algorithm.
[bibtex-entry]
-
M. Ng.
A note on constrained k-means algorithms.
Pattern Recognition,
33(3):515-519,
2000.
Keyword(s): clustering,
constraints,
k-means algorithm,
PCB insertion.
[bibtex-entry]
-
H. Hruschka and M. Natter.
Comparing performance of feedforward neural nets and k-means for cluster-based market segmentation.
European Journal of Operational Research,
114(2):346-353,
1999.
Keyword(s): neural networks,
marketing,
k-means,
cluster analysis,
market segmentation.
[bibtex-entry]
-
P. Lagacherie,
D. Cazemier,
P. van Gaans,
and P. Burrough.
Fuzzy k-means clustering of fields in an elementary catchment and extrapolation to a larger area.
Geoderma,
77(2-4):197-216,
1997.
Keyword(s): hydrology,
fuzzy sets,
clustering.
[bibtex-entry]
-
P. Lagacherie,
D. Cazemier,
P. van Gaans,
and P. Burrough.
Fuzzy k-means clustering of fields in an elementary catchment and extrapolation to a larger area.
Geoderma,
77(2-4):197-216,
1997.
Keyword(s): hydrology,
fuzzy sets,
France.
[bibtex-entry]
BACK TO INDEX
Disclaimer:
This material is presented to ensure timely dissemination of
scholarly and technical work. Copyright and all rights therein
are retained by authors or by other copyright holders.
All person copying this information are expected to adhere to
the terms and constraints invoked by each author's copyright.
In most cases, these works may not be reposted
without the explicit permission of the copyright holder.
Les documents contenus dans ces répertoires sont rendus disponibles
par les auteurs qui y ont contribué en vue d'assurer la diffusion
à temps de travaux savants et techniques sur une base non-commerciale.
Les droits de copie et autres droits sont gardés par les auteurs
et par les détenteurs du copyright, en dépit du fait qu'ils présentent
ici leurs travaux sous forme électronique. Les personnes copiant ces
informations doivent adhérer aux termes et contraintes couverts par
le copyright de chaque auteur. Ces travaux ne peuvent pas être
rendus disponibles ailleurs sans la permission explicite du détenteur
du copyright.
Last modified: Fri Dec 15 07:05:48 2006
Author: Juscelino Dias.
This document was translated from BibTEX by
bibtex2html
|